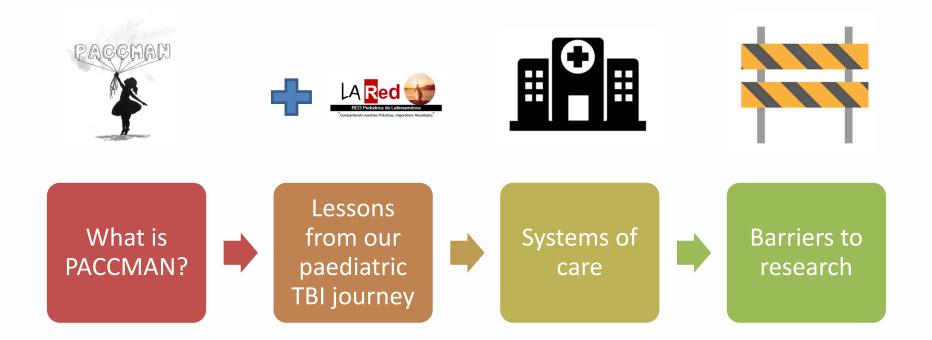


Regional Traumatic Brain Injury Experience

Chong Shu-Ling MBBS, MRCPCH, MCI, MPH
Senior Staff Physician, Emergency Medicine, KKH
Clinical Associate Professor, Duke-NUS
On behalf of PACCMAN and LARed



Sengkang DI Health

Perspectives

Perspectives

What is PACCMAN?

Lessons from our paediatric TBI journey

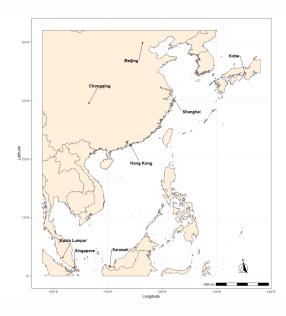
Systems of care

Barriers to research

Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN)

- -Formed in 2015 by paediatric intensive care providers aiming to improve the quality and coordination of paediatric ICU research in Asia
- Increasing recognition that the initial resuscitation of critically ill children starts in the ED!
- PACCMAN serves as a platform to support and stimulate research into effective strategies to improve survival in critically ill children

https://www.scri.edu.sg/paccman/about-paccman/



Major Opportunities for TBI

- Asia has a great need!
 - Poor functional outcomes are prevalent in Asia
 - Among children with moderate-severe TBI, 104 of 324 survivors (32.1%) had poor functional outcomes (moderate disability, severe disability and vegetative state/coma).

Pediatr Crit Care Med. 2021;22:401-411

 Clinicians in PACCMAN want to move beyond research to benchmarking exercises and improving care

BEGINNINGS...

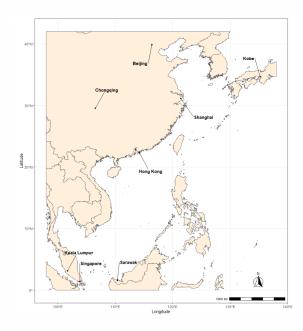
Pediatric Critical Care Medicine. 2020

Traumatic Brain Injury Outcomes in 10 Asian Pediatric ICUs: A Pediatric Acute and Critical Care Medicine Asian Network Retrospective Study

Shu-Ling Chong, et al. The Pediatric Acute & Critical Care Medicine Asian Network (PACCMAN)

Predictors for Poor Functional Outcomes Among Children with Traumatic Brain Injury in Asia

Oral Presentation at SCCM 2020


Early coagulopathy in pediatric traumatic brain injury: A Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN) retrospective study

Shu-Ling Chong, et al. Neurosurgery 2021

Early Coagulopathy in pediatric TBI: A PACCMAN retrospective study

Oral Presentation at SCCM 2021

RESEARCH—HUMAN—CLINICAL STUDIES

Shu-Ling Chong, MPH @** Gene Yong-Kwang Ong, MRCPCH** Charles Qishi Zheng, MSc⁵ Hongxing Dang, MD1 Meixiu Ming, MD Maznisah Mahmood, MPaed* Lawrence Chi Ngong Chan, Soo Lin Chuah, MRCPCH# Olive Pei Ee Lee, MRCPCH^{§§} Suyun Qian, MD11 Lijia Fan, MRCPCH Yoshihiko Konoike, MD*** Jan Hau Lee, MRCPCH### on behalf of the Pediatric Acute and **Critical Care Medicine Asian** Network (PACCMAN)

Early Coagulopathy in Pediatric Traumatic Brain Injury: A Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN) Retrospective Study

BACKGROUND: Although early coagulopathy increases mortality in adults with traumatic brain injury (TBI), less is known about pediatric TBI.

OBJECTIVE: To describe the prothrombin time (PT), activated partial thromboplastin time (APTT), and platelet levels of children with moderate to severe TBI to identify predictors of

In our study population, 53/370 (14.3%) children died, and 127/370 (34.3%) had poor functional outcomes.

PT was commonly deranged in both isolated TBI (30.6%) and multiple trauma with TBI (51.3%).

TABLE 1. Demographics, Clinical Presentation, Management and Outcomes of the Study Population

	Early coagulopathy present $(n = 206)$	No early associated coagulopathy $(n=164)$	<i>P</i> -Value
Age, yr	5.1 (4.0)	5.8 (4.3)	.116
Male gender	128 (62.1)	115 (70.1)	.134
Mechanism of injury			.048
Road traffic collision	100 (48.5)	69 (42.1)	
Fall	90 (43.7)	67 (40.9)	
Child abuse	9 (4.4)	18 (11.0)	
Others	7 (3.4)	10 (6.1)	
Multiple trauma	129 (62.6)	68 (41.5)	<.001
Time to arrival (hs)	10.0 (19.4)	12.0 (31.6)	.467
GCS	7.0 [4.0, 9.0]	9.0 [5.0, 12.0]	<.001
Emergency intubation	175 (85.0)	110 (67.1)	<.001
Blood products administered	155 (75.2)	76 (46.3)	<.001
Hyperosmolar therapy	140 (68.0)	73 (44.5)	<.001
Neurosurgical intervention	88 (42.7)	71 (43.3)	.996
Death	48 (23.3)	5 (3.0)	<.001
Hospital length of stay (d)	30.5 (34.9)	19.5 (22.3)	.001
Poor functional outcome among survivors	85 (53.8)	42 (26.4)	<.001

The countries involved in this network study were China (Mainland) (n = 185), China (Hong Kong) (n = 40), Japan (n = 9), Malaysia (n = 91), and Singapore (n = 45). GCS: Glasgow coma Scale; Poor outcome is defined as Pediatric Cerebral Performance Category (PCPC) discharge rating of moderate disability, severe disability, vegetative state, or coma.

Age, time to arrival and hospital length of stay are presented using mean and standard deviation while GCS is presented with median and IQR.

What more do we know about coagulopathy in paediatric TBI

- Independent predictors for early coagulopathy
 - Young Age
 - GCS < 8
 - Presence of multiple trauma

TABLE 4. Univariate and Multivariable Logistic Regression Identifying Risk Factors for Mortality

Predictors	Unadjusted OR (95% CI)	<i>P</i> -Value	Adjusted OR (95% CI)	<i>P</i> -Value
Early coagulopathy	9.67 (4.11, 28.38)	<.001	7.56 (3.04, 23.06)	<.001
Age	0.95 (0.88, 1.02)	.147	1.00 (0.91, 1.09)	.995
Gender (male)	0.64 (0.35, 1.16)	.135	0.58 (0.29, 1.15)	.118
Mechanism				
Fall (ref)	1.00		1.00	
Road traffic collision	1.06 (0.58, 1.96)	.853	1.02 (0.51, 2.04)	.965
Child abuse	0.73 (0.16, 2.31)	.627	2.33 (0.41, 10.86)	.298
Others	0.36 (0.02, 1.92)	.338	0.73 (0.04, 4.74)	.776
GCS < 8	5.80 (2.86, 13.05)	<.001	5.00 (2.29, 12.05)	<.001
Multiple traumas	2.27 (1.23, 4.35)	.010	1.42 (0.68, 3.09)	.363
Presence of intracranial bleeding	0.60 (0.33, 1.11)	.097	0.85 (0.42, 1.76)	.666
Hyperosmolar therapy	3.26 (1.67, 6.87)	.001	1.41 (0.64, 3.27)	.408
Neurosurgical intervention	0.38 (0.19, 0.72)	.004	0.33 (0.15, 0.71)	.006

CI: confidence interval; GCS: Glasgow coma Scale; OR: odds ratio.

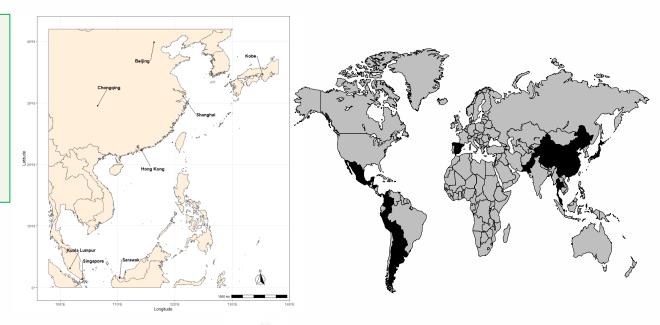
Perspectives

What is PACCMAN?

Lessons from our paediatric TBI journey

Systems of care

Barriers to research



Pediatric Critical Care Medicine. 2020

Traumatic Brain Injury Outcomes in 10 Asian Pediatric ICUs: A Pediatric Acute and Critical Care Medicine Asian Network Retrospective Study

Shu-Ling Chong, et al. The Pediatric Acute & Critical Care Medicine Asian Network (PACCMAN)

Predictors for Poor Functional Outcomes Among Children with Traumatic Brain Injury in Asia Oral Presentation at SCCM 2020

Early coagulopathy in pediatric traumatic brain injury: A Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN) retrospective study

Shu-Ling Chong, et al. Neurosurgery 2021

Early Coagulopathy in pediatric TBI: A PACCMAN retrospective study

Oral Presentation at SCCM 2021

SALTY (Saline in Asia and Latin-America neuroTrauma in the Young) Study:
Is the use of 3% hypertonic saline associated with decreased mortality and improved long-term neurological outcomes among children with traumatic brain injury?

SALTY (Saline in Asia and Latin-America neuroTrauma in the Young)

CLINICAL ARTICLE

Prehospital and emergency management of pediatric traumatic brain injury: a multicenter site survey

Gawin Mai, BS,¹ Jan Hau Lee, MBBS,² Paula Caporal, MD,³⁴ Juan D. Roa G, MD, MS,⁴⁵ Sebastián González-Dambrauskas, MD,⁴⁵ Yanan Zhu, PhD,² Adriana Yock-Corrales, MD,³ Qalab Abbas, MBBS,³ Yasser Kazzaz, MPH,¹⁵⁻¹² Dianna Sri Dewi, BS,¹³ and Shu-Ling Chong, MPH,¹⁴ on behalf of PACCMAN and LARed

Variation in centres

- Variability in resource availability even among "designated trauma centres"
- Variability in physician practices
- Variability in prehospital practices

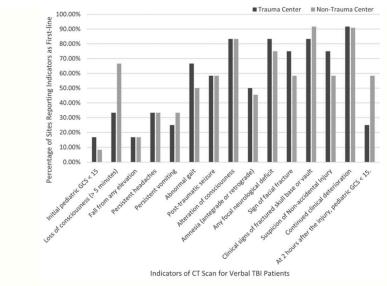


FIG. 4. Bar graph showing neuroimaging indications for verbal pediatric patients with TBI in DTC and NTC (n = 12 each) EDs.

Mai G, Lee JH, Caporal P, et al. Prehospital and emergency management of pediatric traumatic brain injury: a multicenter site survey. *J Neurosurg Pediatr*. 2023;31(6):598-606. Published 2023 Mar 3. doi:10.3171/2023.1.PEDS22456

SALTY (Saline in Asia and Latin-America neuroTrauma in the Young)

Motivation: Use of **hypertonic saline (HTS)** versus **mannitol** in the control of raised intracranial pressure (ICP) secondary to neurotrauma is debated.

Aims: We sought to compare **mortality** and **functional outcomes** among children with moderate to severe traumatic brain injury (TBI) at risk of raised ICP who received 3% HTS compared to those who received 20% mannitol.

Original Investigation | Neurology

Clinical Outcomes of Hypertonic Saline vs Mannitol Treatment Among Children With Traumatic Brain Injury

Shu-Ling Chong, MD, MPH; Yanan Zhu, PhD; Quan Wang, MD; Paula Caporal, MPH; Juan D. Roa, MD; Freddy Israel Pantoja Chamorro, MD; Thelma Elvira Teran Miranda, MD; Hongxing Dang, MD; Chin Seng Gan, MD; Qalab Abbas, MD; Ivan J. Ardila, MD; Mohannad Ahmad Antar, MD; Jesús A. Domínguez-Rojas, MD; María Miñambres Rodríguez, PhD; Natalia Zita Watzlawik, MD; Natalia Elizabeth Gómez Arriola, MD; Adriana Yock-Corrales, MD; Rubén Eduardo Lasso-Palomino, MD; Ming Mei Xiu, MD; Jacqueline S. M. Ong, MD; Hiroshi Kurosawa, MD; Gabriela Aparicio, MD; Chunfeng Liu, MD; Rujipat Samransamruajkit, MD; Juan C. Jaramillo-Bustamante, MD; Nattachai Anantasit, MD; Yek Kee Chor, MD; Deborah M. Turina, MD; Pei Chuen Lee, MD; Marisol Fonseca Flores, MD; Francisco Javier Pilar Orive, PhD; Jane Ng Pei Wen, BSc; Sebastián González-Dambrauskas, MD; Jan Hau Lee, MCI; for the Pediatric Acute and Critical Care Medicine in Asia Network (PACCMAN) and the Red Colaborativa Pediátrica de Latinoamérica (LARed)

Design We performed a prospective multi-center observational cohort study between June 2018 and December 2022.

Setting Participating pediatric intensive care units of the Pediatric Acute & Critical Care Medicine in Asia Network (PACCMAN) and Red Colaborativa Pediátrica de Latinoamerica (LARed) network.

Methods

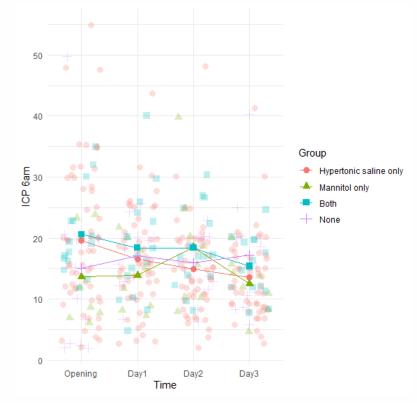
Design We performed a prospective multi-center observational cohort study between June 2018 and December 2022.

Setting Participating pediatric intensive care units of the Pediatric Acute & Critical Care Medicine in Asia Network (PACCMAN) and Red Colaborativa Pediatrica de Latinoamerica (LARed) network.

Participants Children < 18 years old with moderate to severe TBI (Glasgow Coma Scale, GCS ≤13)

Exposure 3% HTS compared to 20% mannitol

Main Outcome(s) and Measure(s)


- 1. Multiple log-binomial regression for mortality
- 2. Multiple linear regression for hospital discharge Pediatric Cerebral Performance Category (PCPC) scores and 3 -month Glasgow Outcome Score-Extended Pediatrics (GOS-E Peds) scores.
 - We also performed inverse probability of treatment weighting (IPTW) using the propensity score method to control for baseline imbalance between groups.

Results

28 PICUs participated in the study: 14 from PACCMAN and 14 from LARed. **455 children** met the eligibility criteria.

Variable	Patients who received Hypertonic Saline (N=184)	Patients who received 20% Mannitol (N=82)	P value
Mortality	13 (7.1)	9 (11.0)	0.336
Poor PCPC (Defined as 3-6)	57/181 (31.5)	20/81 (24.7)	0.306
3-month GOS-E Peds	3.00	5.00	0.111
Score, (median, [IQR])	[1.00, 6.00]	[1.00, 6.00]	
Poor GOS-E Score (3-8)	96/180 (53.3)	46/73 (63.0)	0.166
Duration of mechanical ventilation (median, [IQR])	5.00 [2.50, 8.00]	4.00 [3.00, 6.75]	0.685
Duration of hospital stay (median, [IQR])	16.00 [8.00, 29.00]	17.00 [9.50, 27.00]	0.766
Duration of ICU stay (median, [IQR])	7.00 [4.00, 13.00]	7.00 [4.00, 10.00]	0.441

Individual and mean of 6am intracranial pressure (ICP) readings by day

 After adjustment for confounders, there was no difference in mortality or hospital discharge PCPC scores.

 We found a marginal association between use of mannitol and poorer 3-month GOS-E Peds outcomes in the multivariable linear regression and the propensity score

models

Table 4. Association of Functional Scores With Hyperosmolar Agent Type and Covariates in Univariate, Multivariable, and IPTW-Adjusted Linear Regression Analyses^a

	Univariate model		Multivariable model		IPTW-adjusted model	
Variable	Coefficient (SE)	P value	Adjusted coefficient (SE)	P value	Adjusted coefficient (SE)	P value
PCPC score on hospital discharge						
Hyperosmolar therapy						
3% HTS only	1 [Reference]	NA	1 [Reference]	NA	1 [Reference]	NA
20% Mannitol only	0.001 (0.21)	>.99	-0.02 (0.19)	.91	-0.10 (0.19)	.62
Age	0.001 (0.01)	.93	NA	NA	NA	NA
Sex						
Female	1 [Reference]	NA	1 [Reference]	NA	1 [Reference]	NA
Male	-0.002 (0.15)	.99	NA	NA	NA	NA
Child abuse	0.46 (0.31)	.14	0.45 (0.35)	.19	0.17 (0.36)	.63
Time between injury and hospital arrival, h	<-0.001 (0.004)	.90	NA	NA	NA	NA
Lowest GCS score in first 24 h	-0.20 (0.02)	<.001	-0.20 (0.03)	<.001	-0.20 (0.03)	<.001
Extradural hemorrhage	-0.64 (0.18)	<.001	-0.39 (0.23)	.09	-0.40 (0.23)	.08
GOS-E-Peds score at 3 mo						
Hyperosmolar therapy						
3% HTS only	1 [Reference]	NA	1 [Reference]	NA	1 [Reference]	NA
20% Mannitol only	0.61 (0.35)	.09	0.56 (0.33)	.09	0.64 (0.33)	.05
Age	-0.03 (0.03)	.20	NA	NA	NA	NA
Sex						
Female	1 [Reference]	NA	1 [Reference]	NA	1 [Reference]	NA
Male	-0.21 (0.26)	.42	NA	NA	NA	NA
Child abuse	1.25 (0.50)	.01	0.93 (0.57)	.11	1.02 (0.60)	.09
Time between injury and hospital arrival, h	0.001 (0.009)	.95	NA	NA	NA	NA
owest GCS score in the first 24 h	-0.27 (0.04)	<.001	-0.23 (0.05)	<.001	-0.23 (0.05)	<.001
Extradural hemorrhage	-1.32 (0.29)	<.001	-1.20 (0.38)	.002	-1.19 (0.38)	.002

Abbreviations: GCS, Glasgow Coma Scale; GOS-E-Peds, Glasgow Outcome Scale-Extended Pediatric Version; HTS, hypertonic saline; IPTW, inverse probability treatment weight; NA, not applicable; PCPC, Pediatric Cerebral Performance Category.

^a Multivariable and IPTW-adjusted coefficients (SEs) and P values are presented for hyperosmolar agents and other variables with univariate significance of <.15.</p>

Conclusions

- 1. Use of HTS was not associated with improved survival or better discharge functional scores, when compared to mannitol.
- 2. There was a higher proportion of children who received mannitol with poorer GOS-E Peds scores at 3 months, but the difference was small.

2023/2024 publications

Contents lists available at ScienceDirect

Journal of Pediatric Surgery

journal homepage: www.sciencedirect.com/journal/ journal-of-pediatric-surgery

A Multicenter Study on the Clinical Characteristics and Outcomes Among Children With Moderate to Severe Abusive Head Trauma

Adriana Yock-Corrales ^{a, *}, Jan Hau Lee ^b, Jesús Ángel Domínguez-Rojas ^c, Paula Caporal ^d, Juan D. Roa ^e, Jaime Fernandez-Sarmiento ^f, Sebastián González-Dambrauskas ^g, Yanan Zhu ^h, Qalab Abbas ⁱ, Yasser Kazzaz ^j, Dianna Sri Dewi ^k, Shu-Ling Chong ^{f, †}, on behalf of Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN) and Red Colaborativa Pediátrica de Latino America (LARed) Networks

Acta Neurochirurgica

https://doi.org/10.1007/s00701-023-05741-0

ORIGINAL ARTICLE

A multicenter observational study on outcomes of moderate and severe pediatric traumatic brain injuries—time to reappraise thresholds for treatment

Syeda Kashfi Qadri^{1,2} · Jan Hau Lee^{1,2} · Yanan Zhu³ · Paula Caporal^{4,5} · Juan D Roa G^{6,7} · Sebastián González-Dambrauskas^{8,9} · Adriana Yock-Corrales¹⁰ · Qalab Abbas¹¹ · Yasser Kazzaz¹² · Luming Shi^{3,13} · Dianna Sri Dewi³ · Shu-Ling Chong^{2,14} · On behalf of Pediatric Acute, Critical Care Medicine Asian Network (PACCMAN) · Pediatric collaborative Latin American network (LARed)

Received: 16 May 2023 / Accepted: 22 July 2023

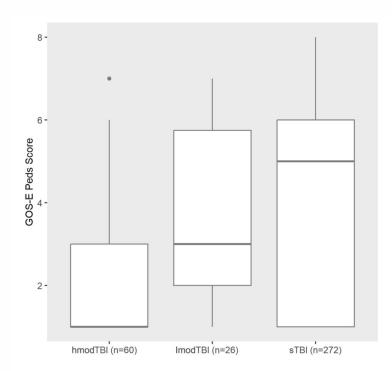
The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Acta Neurochirurgica (2024) 166:82 https://doi.org/10.1007/s00701-024-05919-0

ORIGINAL ARTICLE

CLINICAL ARTICLE

Differences in clinical outcomes and resource utilization in pediatric traumatic brain injury between countries of different sociodemographic indices


Keith Wei Han Liang, MBBS, MRCPCh, 12 Jan Hau Lee, MBBS, MRCPCh, MCI, 23 Syeda K. Qadri, MD, MRCPCh, 23 Janani Nadarajan, BSc, 1 Paula Caporal, MD, MPH, 56 Juan D. Roa G, MD, MSc, 28 Sebastián González-Dambrauskas, MD, 9,10 Qalab Abbas, MBBS, 11 Yasser Kazzaz, MD, FRCPC, MPH, 12 and Shu-Ling Chong, MBBS, MRCPCh, MCI, MPH, 213 on behalf of Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN) and Red Colaborativa Pediátrica de Latinoamérica (LARed Network)

Initial dysnatremia and clinical outcomes in pediatric traumatic brain injury: a multicenter observational study

Gawin Mai¹ · Jan Hau Lee^{2,3} · Paula Caporal^{4,5} · Juan D. Roa G^{5,6} · Sebastián González-Dambrauskas^{5,7} · Yanan Zhu⁸ · Adriana Yock-Corrales⁹ · Qalab Abbas¹⁰ · Yasser Kazzaz^{11,12,13} · Dianna Sri Dewi¹⁴ · Shu-Ling Chong^{15,16} · on behalf of the Pediatric Acute & Critical Care Medicine Asian Network (PACCMAN) and Red Colaborativa Pediátrica de Latinoamérica (LARed Network)

Is moderate TBI really moderate? 'high' mTBI GCS 11-13 vs 'low' mTBI GCS 9-10

Fig. 3 Box plots comparing the main outcome (GOS-E Peds at 3 months) according to group (high moderate, low moderate, and severe traumatic brain injury (TBI)). Legend: hmodTBI (median [IQR]): $1.00 \, [1.00, \, 3.00]$, lmodTBI (median [IQR]): $3.00 \, [2.00, \, 5.75]$, sTBI (median [IQR]): $5.00 \, [1.00, \, 6.00]$). Test of significance was by Kruskal Wallis test, p value < 0.001. The dot above the first "box and whiskers" is a value which is more than 1.5*IQR from the upper hinge. Footnote: hmodTBI, high moderate traumatic brain injury; lmodTBI, low moderate traumatic brain injury; sTBI, severe traumatic brain injury; GOS-E Peds, Glasgow Outcome Scale-

Patients with low modTBI (vs. high modTBI) were more likely to have;

- Invasive ICP monitoring (32.3% vs. 4.5%, p < 0.001)
- Longer PICU stay (days, median [IQR]; 5.00 [4.00, 9.75] vs 4.00 [2.00, 5.00], p = 0.007), and longer hospital stay
- Median GOS-E Peds scores were significantly different
- After adjusting for age, sex, presence of polytrauma and cerebral edema, ImodTBI, and sTBI remained significantly associated with higher GOS-E scores

Qadri SK, Lee JH, Zhu Y, et al. A multicenter observational study on outcomes of moderate and severe pediatric traumatic brain injuries-time to reappraise thresholds for treatment. *Acta Neurochir (Wien)*. 2023;165(11):3197-3206.

Journal of Pediatric Surgery

journal homepage: www.sciencedirect.com/journal/ journal-of-pediatric-surgery

A Multicenter Study on the Clinical Characteristics and Outcomes Among Children With Moderate to Severe Abusive Head Trauma

Adriana Yock-Corrales ^{a, *}, Jan Hau Lee ^b, Jesús Ángel Domínguez-Rojas ^c, Paula Caporal ^d, Juan D. Roa ^e, Jaime Fernandez-Sarmiento ^f, Sebastián González-Dambrauskas ^g, Yanan Zhu ^h, Qalab Abbas ⁱ, Yasser Kazzaz ^j, Dianna Sri Dewi ^k, Shu-Ling Chong ^{l, 1}, on behalf of Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN) and Red Colaborativa Pediátrica de Latino America (LARed) Networks

When should I suspect Abusive Head Trauma?

Table 4Mutivariable logistic regression of variables associated independently with Abusive Head Trauma.

	Multivariable adjusted OR (96% CI)	P value
Age Younger than 2 years (1)	4.96 (1.77-13.95)	< 0.001
Glasgow Coma Scale	1.07 (0.96-1.18)	0.231
Presence of seizures	3.43 (1.60-7.36)	0.002
Presence of subdural hemorrhage	8.26 (3.51–19.47)	<0.001

OR: odds ratio; CI: Confidence Interval.

Bold: Variables with p-values statistically significant.

- 47/392 (12%) were diagnosed with AHT.
- Compared to those with accidental injuries, children with AHT were more frequently
 2 years old (42, 89.4% vs 133, 38.6%, p < 0.001), but less likely to have multiple injuries (14, 29.8% vs 158, 45.8%, p = 0.038).
- The AHT group was more likely to suffer subdural hemorrhage (SDH), require antiepileptic medications, and neurosurgical interventions.

Resource Perspective

CLINICAL ARTICLE

Differences in clinical outcomes and resource utilization in pediatric traumatic brain injury between countries of different sociodemographic indices

Keith Wei Han Liang, MBBS, MRCPCh, 1.2 Jan Hau Lee, MBBS, MRCPCh, MCI, 2.3 Syeda K. Qadri, MD, MRCPCh, 2.3 Janani Nadarajan, BSc, 4 Paula Caporal, MD, MPH, 5.6 Juan D. Roa G, MD, MSc, 7.8 Sebastián González-Dambrauskas, MD, 9.10 Qalab Abbas, MBBS, 11 Yasser Kazzaz, MD, FRCPC, MPH, 12 and Shu-Ling Chong, MBBS, MRCPCh, MCI, MPH, 2.13 on behalf of Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN) and Red Colaborativa Pediátrica de Latinoamérica (LARed Network)

Liang et al.

TABLE 1. Baseline characteristics of study population stratified by income status

Non-LMIC Sites, n = 426	LMIC Sites, n = 345	p Value
284 (66.7)	219 (63.7)	0.384
5.1 (4.5)	6.5 (5.1)	<0.001
		<0.001
159 (37.3)	180 (52.3)	
190 (44.6)	131 (38.1)	
39 (9.2)	12 (3.5)	
38 (8.9)	21 (6.1)	
2.0 (0.8–7.0)	5.0 (2.0-12.0)	<0.001
309 (72.5)	290 (84.8)	<0.001
8 (6–11)	7 (5–11)	0.028
4 (3-5)	4 (2-5)	0.002
203 (47.8)	186 (54.1)	0.082
196 (46.0)	186 (54.1)	0.026
91 (22.5)	80 (26.3)	0.236
	Sites, n = 426 284 (66.7) 5.1 (4.5) 159 (37.3) 190 (44.6) 39 (9.2) 38 (8.9) 2.0 (0.8–7.0) 309 (72.5) 8 (6–11) 4 (3–5) 203 (47.8) 196 (46.0)	Sites, n = 426 n = 345 284 (66.7) 219 (63.7) 5.1 (4.5) 6.5 (5.1) 159 (37.3) 180 (52.3) 190 (44.6) 131 (38.1) 39 (9.2) 12 (3.5) 38 (8.9) 21 (6.1) 2.0 (0.8-7.0) 5.0 (2.0-12.0) 309 (72.5) 290 (84.8) 8 (6-11) 7 (5-11) 4 (3-5) 4 (2-5) 203 (47.8) 186 (54.1) 196 (46.0) 186 (54.1)

Values are presented as number of patients (%) unless otherwise indicated. Data were missing for some patients.

Liang et al.

TABLE 1. Baseline characteristics of study population stratified by income status

Baseline Characteristic	Non-LMIC Sites, n = 426	LMIC Sites, n = 345	p Value
Male sex	284 (66.7)	219 (63.7)	0.384
Age, yrs, mean (SD)	5.1 (4.5)	6.5 (5.1)	<0.001
Mechanism of injury			<0.001
Road traffic collision	159 (37.3)	180 (52.3)	
Fall	190 (44.6)	131 (38.1)	
Child abuse	39 (9.2)	12 (3.5)	
Other	38 (8.9)	21 (6.1)	
Time to arrival, hrs, median (IQR)	2.0 (0.8–7.0)	5.0 (2.0-12.0)	<0.001
Transported by ambulance	309 (72.5)	290 (84.8)	<0.001
Presenting GCS score, median (IQR)	8 (6-11)	7 (5–11)	0.028
Presenting GCS-motor score, median (IQR)	4 (3-5)	4 (2-5)	0.002
Presenting GCS score <8	203 (47.8)	186 (54.1)	0.082
Multiple trauma	196 (46.0)	186 (54.1)	0.026
Posttraumatic seizures	91 (22.5)	80 (26.3)	0.236

Values are presented as number of patients (%) unless otherwise indicated. Data were missing for some patients.

TABLE 2. Mortality, hospital stay, and functional outcomes

	Non-LMIC	LMIC Sites,	р
Outcome Measure	Sites, n = 426	n = 345	Value
Hospital mortality	55 (12.9)	33 (9.6)	0.146
Intubation duration among survivors, days	4 (1–7)	4 (2–7)	0.745
ICU stay duration among survivors, days	5 (2–10)	7 (4–12)	<0.001
Hospital stay duration among survivors, days	11 (6–22)	16 (8–29)	<0.001
14-day ventilation-free days	9 (3-13)	10 (5-12)	0.277
14-day ICU-free days	8 (0-11)	6 (0-10)	0.004
28-day hospital-free days	13 (0-20)	9 (0-18)	0.007
Baseline PCPC score			0.550
1	383 (97.2)	325 (98.2)	
2	7 (1.8)	4 (1.2)	
3	2 (0.5)	2 (0.6)	
4	2 (0.5)	0 (0.0)	
5	0 (0.0)	0 (0.0)	
Discharge PCPC score among survivors			<0.001
1	191 (52.8)	138 (44.5)	
2	94 (26.0)	77 (24.8)	
3	28 (7.7)	52 (16.8)	
4	43 (11.9)	25 (8.1)	
5	6 (1.7)	18 (5.8)	
Poor PCPC outcome among survivors	77 (21.3)	96 (31.0)	0.004

Liang et al.

TABLE 1. Baseline characteristics of study population stratified by income status

Non-LMIC Sites, n = 426	LMIC Sites, n = 345	p Value
284 (66.7)	219 (63.7)	0.384
5.1 (4.5)	6.5 (5.1)	< 0.001
		<0.001
159 (37.3)	180 (52.3)	
190 (44.6)	131 (38.1)	
39 (9.2)	12 (3.5)	
38 (8.9)	21 (6.1)	
2.0 (0.8–7.0)	5.0 (2.0-12.0)	<0.001
309 (72.5)	290 (84.8)	<0.001
8 (6–11)	7 (5–11)	0.028
4 (3-5)	4 (2-5)	0.002
203 (47.8)	186 (54.1)	0.082
196 (46.0)	186 (54.1)	0.026
91 (22.5)	80 (26.3)	0.236
	Sites, n = 426 284 (66.7) 5.1 (4.5) 159 (37.3) 190 (44.6) 39 (9.2) 38 (8.9) 2.0 (0.8–7.0) 309 (72.5) 8 (6–11) 4 (3–5) 203 (47.8) 196 (46.0)	Sites, n = 426 n = 345 284 (66.7) 219 (63.7) 5.1 (4.5) 6.5 (5.1) 159 (37.3) 180 (52.3) 190 (44.6) 131 (38.1) 39 (9.2) 12 (3.5) 38 (8.9) 21 (6.1) 2.0 (0.8-7.0) 5.0 (2.0-12.0) 309 (72.5) 290 (84.8) 8 (6-11) 7 (5-11) 4 (3-5) 4 (2-5) 203 (47.8) 186 (54.1) 196 (46.0) 186 (54.1)

Values are presented as number of patients (%) unless otherwise indicated. Data were missing for some patients.

TABLE 2. Mortality, hospital stay, and functional outcomes

	Non-LMIC	LMIC Sites,	р
Outcome Measure	Sites, n = 426	n = 345	Value
Hospital mortality	55 (12.9)	33 (9.6)	0.146
Intubation duration among survivors, days	4 (1–7)	4 (2–7)	0.745
ICU stay duration among survivors, days	5 (2–10)	7 (4–12)	<0.001
Hospital stay duration among survivors, days	11 (6–22)	16 (8–29)	<0.001
14-day ventilation-free days	9 (3-13)	10 (5-12)	0.277
14-day ICU-free days	8 (0-11)	6 (0-10)	0.004
28-day hospital-free days	13 (0-20)	9 (0-18)	0.007
Baseline PCPC score			0.550
1	383 (97.2)	325 (98.2)	
2	7 (1.8)	4 (1.2)	
3	2 (0.5)	2 (0.6)	
4	2 (0.5)	0 (0.0)	
5	0 (0.0)	0 (0.0)	
Discharge PCPC score			<0.001
among survivors			
1	191 (52.8)	138 (44.5)	
2	94 (26.0)	77 (24.8)	
3	28 (7.7)	52 (16.8)	
4	43 (11.9)	25 (8.1)	
5	6 (1.7)	18 (5.8)	
Poor PCPC outcome among survivors	77 (21.3)	96 (31.0)	0.004

Liang et al.

TABLE 1. Baseline characteristics of study population stratified by income status

Baseline Characteristic	Non-LMIC Sites, n = 426	LMIC Sites, n = 345	p Value
Male sex	284 (66.7)	219 (63.7)	0.384
Age, yrs, mean (SD)	5.1 (4.5)	6.5 (5.1)	< 0.001
Mechanism of injury			<0.001
Road traffic collision	159 (37.3)	180 (52.3)	
Fall	190 (44.6)	131 (38.1)	
Child abuse	39 (9.2)	12 (3.5)	
Other	38 (8.9)	21 (6.1)	
Time to arrival, hrs, median (IQR)	2.0 (0.8–7.0)	5.0 (2.0-12.0)	<0.001
Transported by ambulance	309 (72.5)	290 (84.8)	<0.001
Presenting GCS score, median (IQR)	8 (6-11)	7 (5–11)	0.028
Presenting GCS-motor score, median (IQR)	4 (3-5)	4 (2-5)	0.002
Presenting GCS score <8	203 (47.8)	186 (54.1)	0.082
Multiple trauma	196 (46.0)	186 (54.1)	0.026
Posttraumatic seizures	91 (22.5)	80 (26.3)	0.236

Values are presented as number of patients (%) unless otherwise indicated. Data were missing for some patients.

TABLE 2. Mortality, hospital stay, and functional outcomes

	Non-LMIC	LMIC Sites,	р
Outcome Measure	Sites, n = 426	n = 345	Value
Hospital mortality	55 (12.9)	33 (9.6)	0.146
Intubation duration among survivors, days	4 (1–7)	4 (2–7)	0.745
ICU stay duration among survivors, days	5 (2–10)	7 (4–12)	<0.001
Hospital stay duration among survivors, days	11 (6–22)	16 (8–29)	<0.001
14-day ventilation-free days	9 (3-13)	10 (5-12)	0.277
14-day ICU-free days	8 (0-11)	6 (0-10)	0.004
28-day hospital-free days	13 (0-20)	9 (0-18)	0.007
Baseline PCPC score			0.550
1	383 (97.2)	325 (98.2)	
2	7 (1.8)	4 (1.2)	
3	2 (0.5)	2 (0.6)	
4	2 (0.5)	0 (0.0)	
5	0 (0.0)	0 (0.0)	
Discharge PCPC score among survivors			<0.001
1	191 (52.8)	138 (44.5)	
2	94 (26.0)	77 (24.8)	
3	28 (7.7)	52 (16.8)	
4	43 (11.9)	25 (8.1)	
5	6 (1.7)	18 (5.8)	
Poor PCPC outcome among survivors	77 (21.3)	96 (31.0)	0.004

TABLE 3. Predictors of poor functional outcome

Predictor	Unadjusted OR (95% CI)	p Value	aOR (95% CI)	p Value
LMIC	1.66 (1.17–2.35)	0.004	1.53 (1.04-2.26)	0.033
Age, yrs	1.03 (0.99-1.06)	0.150	1.02 (0.98-1.06)	0.397
Male sex	1.21 (0.84-1.76)	0.310	1.14 (0.75-1.71)	0.544
Time to arrival	1.01 (1.00-1.01)	0.051	1.01 (1.00-1.01)	0.187
Total GCS score	0.81 (0.77-0.86)	<0.001	0.83 (0.78-0.88)	<0.001
Mechanism of child abuse	1.49 (0.78-2.85)	0.223	1.75 (0.79 -3.88)	0.170
Presence of multiple trauma	2.05 (1.44-2.92)	<0.001	1.49 (1.01–2.19)	0.046

Boldface type indicates statistical significance.

Perspectives

What is PACCMAN?

Lessons from our paediatric TBI journey

Systems of care

Barriers to research

SYSTEMS OF CARE

Pre-hospital Phase

- Majority of TBI-related deaths come from LMICs: mainly due to road traffic events, conflict, terrorism, and interpersonal violence.
- The Excellence in Prehospital Injury Care for Children Study (EPIC4Kids), demonstrated an improvement in survival-todischarge for children with severe TBI when prehospital guidelines were implemented in Arizona in the United States of America.
- However, there are substantial variations in pre-hospital trauma systems worldwide, including response time, on-scene and travel time, and interventions on site.

Lancet. 2024;403(10440):2133-2161. doi:10.1016/S0140-6736(24)00757-8

Ann Emerg Med. 2021;77(2):139-153. doi:10.1016/j.annemergmed.2020.09.435

Lancet Neurol. 2022;21(11):1004-1060. doi:10.1016/S1474-4422(22)00309-X

Acute Care

- Multifactorial contributions to poorer TBI outcomes in LMICs: delays to CT scan, tertiary care, intensive care, and high barriers to ICP monitoring.
- A comparative study between an LMIC paediatric cohort and the TRACK-TBI paediatric cohort at Massachusetts General Hospital (MGH) in the United States
 - HIC status correlated with shorter time to consult, imaging and surgery, shorter hospitalisation and better outcomes among severe cases.

Rolle ML, Pascual JSG, Williams AL, et al. Time to Care: Analysis of Time Differences and Outcomes in the Management of Pediatric Traumatic Brain Injury for a High-Income and Lower-Middle-Income Country. *World Neurosurg*. April 2023.

Post Acute Care

- Current systems of care are inconsistent across the spectrum of TBI severity, resulting in gaps in service delivery post-hospital discharge.
- There is a need to establish standards for systematic transition back to school and community, and coordination between multiple specialties¹⁰ ¹¹.
- There is need for longer-term maintenance of rehabilitation and to systematically involve parents and caregivers in goal-setting and action planning of interventions¹².

Arch Phys Med Rehabil. 2020;101(6):1072-1089. doi:10.1016/j.apmr.2020.01.013 J Head Trauma Rehabil. 2017;32(6):367-377. doi:10.1097/HTR.0000000000000287 Dev Med Child Neurol. 2024;66(7):836-848. doi:10.1111/dmcn.15773

National Injury Prevention

1 April 2025, Tuesday

8.30am - 4.30pm

Event Leads

Clin Asst Prof Ronald Tan

Senior Consultant

Department of Emergency Medicine

KK Women's and Children's Hospital

NUHS Tower Block Auditorium, Level 1 1E Kent Ridge Road, Singapore 119228

Scan QR code to register

Injuries may occur at any time and anywhere, including roads, in workplaces, from falls, and through drowning. These incidents are preventable.

Join the first national conference that brings together stakeholders from across the government, including ministries, statutory boards, and safety councils, to engage in discussions and create a national injury prevention framework for Singapore.

Guest-of-Honour

Prof Kenneth Mak Ministry of Health

Speakers

Adj Asst Prof Teo Li-Tserng Head of Service (Trauma Surgery), c Tan Tock Seng Hospital Regional Director, tral Region Trauma Services, lational Healthcare Group

Dr Ross Davenport

Clin Asst Prof Angelina Ang

Adj Asst Prof Raj Menon Centre Director Senior Consultant National University Centre for Trauma National University Hospital

Or Lunette Loo

Organised by:

National University

NATIONAL TRAUMA UNIT

Supported by:

Perspectives

What is PACCMAN?

Lessons from our paediatric TBI journey

Systems of care

Barriers to research

Regional Perspectives

- TBI research in Asia
 - Developing research infrastructure
 - Difficulties without legal team support e.g. Signing of research agreements
 - -Not all sites have electronic health records
 - -Time = a matter of "good will"

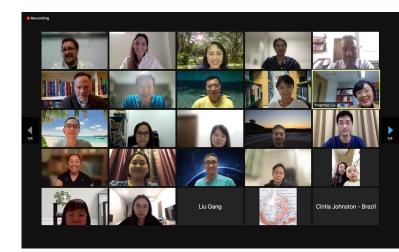
PEDIATRIC TBI SYMPOSIUM

NOVEMBER 24TH, 2021

COL 7-8.30am / ARG 9-10.30am / MEX 7-8.30am 6-7.30am (DST regime) / UK 12-1.30pm / SG MY PH CN HK 8-9.30pm / TH VT ID 7-8.30pm / JP KR 9-10.30pm / IN 5.30-7pm / PK 5-6.30pm

AGENDA

- The importance of multicenter studies in TBI research Robert C Tasker, MD, FRCP
- Use of hyperosmolar agents: SALTY evidence versus reality Shu-Ling Chong, MPH
- Fluids in TBI: How much is too much? Suyun Qian, MD
- ICP monitor: Bane or boon? *Edgar Guadarrama Granados, MD*


Meeting link

Join Zoom Meeting click here
 Meeting ID: 816 4423 7767
 Passcode: 956385

GLOBAL COORDINATORS

America – Europe Juan David Roa MD MSC jdroag@fucsalud.edu.co Paula Caporal MD caporalpaula@gmail.com

Asia Pacific
Shu Ling Chong MD chong.shu-ling@kkh.com.sg
Dianna Sri Dewi Dianna.Sri.Dewi@kkh.com.sg

Barriers to regional collaborations

- Increasing need to fund multi-country collaborations = vital for sustainability
- Data sharing
- Recruitment difficulties
 - No dedicated time and no dedicated research assistants in many countries in Asia
- Research ideas, analysis and sub-analysis heavily reliant on a small number of individuals

Steps forward

- Provide context and platforms for networking and collaboration
- Guidance to troubleshoot specific known pitfalls in international research
 - -Regular huddles
 - -? Mentorship programs

Acknowledgements

- KKH Children's Emergency and Children's Intensive Care Unit
- Mentorship by Professor Marcus Ong
- KKH research coordinators: Jane Ng and Dianna Sri
- A/Prof Jan Hau Lee and PACCMAN site Pls
- LARed leadership: Sebastián González-Dambrauskas, Paula Caporal, Juan D Roa; LARed site Pls
- Singapore Clinical Research Institute
 - Epidemiologists: Julie Zhu, Charles Zheng, Brendon Zhou
 - Coordinator: Ms Patricia Tay

Chong.Shu-Ling@kkh.com.sg

THANK YOU

CALL FOR USE CASES: EM-RADAR

SingHealth DukeNUS
ACADEMIC MEDICAL CENTRE

EMERGENCY MEDICINE

Submit your Research Proposals!

Write to emed.acp@singhealth.com.sg for the Data Request Application form

SingHealth Emergency Medicine Real-world Anonymised DAta Repository (EM-RADAR)

Data Scope

- o Phase 1: SGH and SKH ED data
- o Period: 1 June 2016 31 December 2022

Timeline

- o Call for proposals are open!
- Data access on ODySSEy begins: Q2/Q3 2025 (after necessary approvals)

Selected teams will access

- o 27 ED Datasets for SGH (De-identified) and/or
- o 26 ED Datasets for SKH (De-identified)
- Comprehensive and robust ED Data: Include demographics, clinical information, lab results, outcome data etc

